Ultrafast nonlinear effects in one-dimensional photonic crystals
نویسنده
چکیده
This thesis deals with the temporal dynamics of light interacting with a special class of nano-structures: so-called photonic crystals (PCs). The focus of these investigations is nonlinear phenomena on a sub-picosecond time scale. PCs are solid-state nano-structures with a spatially periodic dielectric function. They influence propagating light in an analogous manner to that of electronic motion in a periodic lattice potential of a semiconductor or metal. These structures are said to be one-, two-, or three-dimensional, depending on their spatial periodicity. For this thesis, two different types of one-dimensional PCs have been studied: semiconductor multiple-quantum-well (MQW) Bragg structures, which are resonant PCs, and metal-dielectric PCs. For both material systems, the fundamental light-matter interaction processes, as well as potential applications, are discussed. The properties of MQW Bragg structures have been investigated by phaseresolved pulse propagation measurements. Several light-matter interaction regimes, ranging from linear excitation to high-intensity phenomena such as self-phase modulation, have been studied in great detail. It has been possible to make a clear distinction between the bulk properties and the influence of the quantum wells. The results constitute a considerable contribution to the fundamental understanding of semiconductor nano-structures. The experiments performed on one-dimensional metal-dielectric PCs are pioneering work in that they have studied the temporal dynamics in such structures for the very first time. These structures are especially interesting for application in ultrafast optical devices. Several predictions about their transmission dynamics could be tested in the measurements presented here. Essentially, two effects on different time and magnitude scales where observed, and a significantly different behavior as compared to single nano-scale metal layers could be identified.
منابع مشابه
A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)
Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...
متن کاملBand Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method
We report the simulation results for impact of nonlinear Kerr effect on band structures of a two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide (W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The numerical simulation was performed using...
متن کاملPhase Properties of One-Dimensional Quaternary Photonic Crystals
In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملGiant Goos-Häenchen Shift of a Gaussian Beam Reflected from One-Dimensional Photonic Crystals Containing Left-Handed Lossy Metamaterials
We perform a theoretical investigation on the Goos-Häenchen shift (the lateral shift) in one-dimensional photonic crystals (1DPCs) containing left-handed (LH) metamaterials. The effect was studied by use of a Gaussian beam. We show that the giant lateral displacement is due to the localization of the electromagnetic wave which can be both positive and negative depending on the incidence angle o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008